BIOELEMENTOS Y BIOMOLÉCULAS
· ELEMENTOS BIOGÉNCOS
Ningún Elemento químico es exclusivo de los seres vivos y todos se encuentran también en la Naturaleza. Sin embargo, hay sólo 27 que forman parte permanente de la vida y otros 60 pueden aparecer ocasionalmente. Estos elementos se denominan elementos biogénicos o biolementos. Según su importancia y abundancia se clasifican en:
· Elementos plásticos primarios: carbono, hidrógeno, oxígeno y nitrógeno. Representan algo más del 96% del peso de cualquier organismo. Son elementos imprescindibles para la creación de materia orgánica
· Elementos secundarios indispensables: fósforo, azufre, sodio, potasio, calcio, magnesio y cloro. Constituyen el 3% en peso aproximadamente. Son bioelementos necesarios para la vida de la célula.
· Oligoelementos o elementos traza: Además de los señalados existen otros que son necesarios para el funcionamiento celular y que en conjunto representan menos del 1%. No todos forman parte de los seres vivos. Cabe citar por ejemplo el hierro, cinc, bromo, yodo y silicio.
Al contrario que en los seres inertes, donde el silicio es la base, en los seres vivos se utiliza la química del carbono por varias razones:
· Al tener peso atómico bajo permite enlaces covalentes estables, pero no tanto para impedir las reacciones metabólicas.
· La estructura del átomo de carbono permite conseguir largas cadenas ramificadas que pueden romperse con facilidad.
· Los átomos de carbono se unen con facilidad al nitrógeno, hidrógeno, oxígeno y azufre, facilitando así la unión de diferentes grupos funcionales.
· Función de los bioelementos primarios y secundarios
El carbono y el hidrógeno constituyen la estructura básica de las moléculas orgánicas y, junto al oxígeno, son los principales componentes. El nitrógeno participa en la construcción de proteínas y ácidos nucleicos.
El fósforo forma parte de los ácidos nucleicos y sus enlaces son utilizados en la obtención de energía. El azufre constituye parte de la mayoría de las proteínas.
El resto de bioelementos secundarios se encuentran en el interior de la célula disociados como iones. El sodio potasio y cloro participan en mantener el grado de salinidad así como en el impulso nervioso.
El calcio actúa como constitutivo de estructuras esqueléticas, en el mecanismo de contracción muscular y en la coagulación entre otros procesos. El magnesio es imprescindible para la acción catalítica de muchas enzimas.
· Función de los oligoelementos
El hierro participa en los procesos redox de la cadena respiratoria y forma parte de la hemoglobina. El cobre forma parte de múltiples enzimas de oxidación. El cobalto y el molibdeno forman parte de coenzimas. El yodo es fundamental para la hormona del tiroides y el flúor en la formación de los dientes.
· LAS BIOMOLÉCULAS
Los átomos de los diferentes bioelementos se combinan para formar las moléculas constituyentes de la vida que se dividen en inorgánicas (agua y sales minerales) y orgánicas (glúcidos, lípidos, proteínas y ácidos nucleicos)
Muchos de estos compuestos orgánicos son macromoléculas formadas por otras moléculas más sencillas. La unidad estructural aislada se llama monómero y la macromolécula recibe el nombre de polímero.
· EL AGUA EN LOS SERES VIVOS
El agua constituye el 75 % en peso de la materia viva. Cuanto más joven es el individuo, más porcentaje de agua tiene en su organismo, que va perdiendo con el paso del tiempo. Según su situación se clasifica en:
· Agua circulante: que se desplaza a través del organismo y es utilizada como transporte de sustancias.
· Agua de imbibición: Se encuentra empapando los materiales citoplasmáticos, unida débilmente a los materiales biológicos de los que se separa por desecación a los 100 ºC
· Agua ligada: retenida en combinaciones diversas en el interior de las células, no desaparece por desecación.
· Propiedades del agua
La diferencia de atracción de electrones hace que el átomo del agua sea un dipolo eléctrico con lo que las moléculas tienden a asociarse por puentes de hidrógeno. Se forman grupos de hasta nueve moléculas, pero se deshacen al momento.
· Elevada capacidad disolvente y dispersante: Es el disolvente universal y tanto las sales cristalizadas, los iones y los compuestos orgánicos se disuelven con facilidad en ella. Así mismo dispersa sustancias anfipáticas, que contienen grupos hidrófobos e hidrófilos.
· Elevada tensión superficial: es decir, que al contacto con otro medio forma una película bastante resistente.
· Alto calor específico: el agua necesita una caloría para elevar un gramo 1 ºC, un valor relativamente alto que permite que el agua absorba o libere cantidades de calor sin sufrir variaciones en su temperatura.
· Alta conductividad: facilita la distribución del calor por toda la masa de agua.
· Alto calor de vaporización: necesita mucho calor para pasar a estado gaseoso.
· Funciones biológicas del agua
· Vehículo de transporte de sustancias: debido a su poder disolvente y dispersante transporta sustancias de un punto a otro del organismo. Por otra parte, resulta indispensable para el intercambio de materia entre célula y medio.
· Medio de reacción: gracias al poder disolvente, la mayoría de las biomoléculas están disueltas en agua y de ese modo reaccionan entre sí.
· Reactivo químico: participa en las reacciones por su capacidad de disociarse en iones H+ y OH-, como ocurre en la hidrólisis, rotura de enlaces introduciendo agua.
· Agente regulador de la temperatura: ya que su alto calor específico le convierte en un excelente amortiguador de los cambios térmicos.
· LAS SALES MINERALES EN LOS SERES VIVOS
En todos los seres vivos, tanto animales como vegetales se encuentran:
En estado sólido, formando parte de estructuras esqueléticas, como el calcio en los huesos o la sílice en los caparazones de algas.
En su mayoría en disolución, en forma iónica. Su metabolismo se diferencia del de los demás componentes de la materia viva en que no pueden ser ni producidas ni degradas. Las funciones principales de las sales son la regulación de los procesos osmóticos, la regulación del pH y la acción específica de los cationes
· Regulación de los procesos osmóticos
Si dos sustancias se ponen en contacto por difusión, el soluto pasa de la más concentrada a la más diluida hasta igualar concentraciones. Sin embargo, si dichas disoluciones se separan por una membrana impermeable (solo deja pasar el disolvente), únicamente pasará el disolvente de la más diluida, o hipotónica, a la más concentrada, o hipertónica. Este proceso se denomina ósmosis.
La presión osmótica, que es la que se ejerce contra la membrana plasmática, es capaz de hacer ascender la disolución en contra de la gravedad.
En la ósmosis se produce el fenómeno de plasmólisis, en el que la célula que desprende agua para igualar la concentración se arruga y el contrario, de turgencia, en el que la célula se dilata tanto que puede llegar a reventar. La membrana plasmática es la que actúa como membrana semipermeable.
· Regulación del pH
Para su buen funcionamiento, las células requieren un pH próximo a la neutralidad. Sin embargo, como resultado de las reacciones metabólicas, continuamente se están produciendo sustancias ácidas o básicas que alteran el pH. Para evitarlo, el organismo dispone de ciertos sistemas químicos, denominados amortiguadores o tampón que evitan el cambio de pH constituidos por un ácido débil y una sal del mismo ácido. El más importante es el formado por ácido carbónico y carbonato sódico.
· Acción específica de los cationes
Los cationes ejercen diversas acciones que dependen del tipo de catión y no pueden ser sustituidos por otro. Algunos de ellos son antagónicos, es decir, uno estimula una acción y otro la inhibe. Los cationes de Na y K son los que paralizan el corazón en la diástole, mientras que el Ca lo hace en la sístole, complementándose
Teniendo todo esto en cuenta, podemos afirmar que para la vida, los líquidos han de guardar las siguientes relaciones:
· Ser isotónico con las células (misma concentración)
· Tener un pH apropiado, cercano a la neutralidad
· Composición catiónica equilibrada, en determinada proporción
· ESTADOS FISICOS DE LA MATERIA
· Estado gaseoso. Son los gases que intervienen el metabolismo celular (oxígeno y dióxido de carbono) y los que son inertes (nitrógeno)
· Estado líquido. Sustancias disueltas en agua.
· Estudio de las disoluciones coloidales
Los solutos de elevado peso molecular se denominan partículas coloidales o coloides. Sus propiedades son:
o Capacidad de presentarse en estado de sol o de gel, es decir, en un estado más fluido o más viscoso. Ese paso de un estado a otro lo determina la cantidad de agua. El citoplasma interior está en estado de sol mientras que en la periferia se encuentra en estado de gel.
o Elevada viscosidad, oponen gran resistencia al desplazamiento relativo de sus moléculas.
o Gran poder adsorbente, poseen la capacidad de unir a su superficie gran cantidad de moléculas. Cuanto menos sea el tamaño de las partículas, mayor es su adherencia.
o Presentan el efecto Tyndall. Al atravesarlas la luz presentan un aspecto turbio, por la reflexión y la refracción de la luz.
o No se pueden sedimentar. Son estables y no sedimentan, al contrario que las suspensiones. Sin embargo, puede conseguirse mediante ultra centrifugación.
o Se pueden purificar por diálisis, es decir, separar las partículas coloidales de las no coloidales mediante una membrana.
o Se pueden separar por electroforesis, es decir, mediante la acción de una carga eléctrica.