Núcleo celular
El núcleo celular es una estructura característica de las células eucariotas. Contiene la mayor parte del material genético celular, organizado en cromosomas, basados cada uno en una hebra de ADN con acompañamiento de una gran variedad de proteínas, como las histonas. Los genes que se localizan en estos cromosomas constituyen el genoma nuclear de la célula eucariótica, donde se encuentran otros genomas, propio de algunos orgánulos de origen endosimbiótico. La función del núcleo es mantener la integridad de estos genes y controlar las actividades celulares a través de la expresión génica.
Los principales elementos estructurales son la envoltura nuclear, que corresponde a una doble membrana que lo encierra y separa del citoplasma celular, y la lámina nuclear, que es una red de filamentos intermedios que se encuentra por el interior de la envoltura nuclear la cual da soporte mecánico al igual que lo hace el citoesqueleto en toda la célula. Ya que la membrana nuclear es impermeable a la mayoría de las moléculas, son necesarios poros nucleares para permitir el movimiento de moléculas a través de la envoltura. Estos poros cruzan ambas membranas de la envoltura nuclear, proporcionando un canal que permite el movimiento libre de pequeñas moléculas e iones, mediante difusión simple. El movimiento de las moléculas más grandes como las proteínas es controlado cuidadosamente, y requiere transporte activo facilitado por proteínas transportadoras. El transporte nuclear es de fundamental importancia para la función celular, ya que el movimiento a través de los poros es necesario tanto para la expresión genética como el mantenimiento cromosomal.
Aunque el interior del núcleo no contiene límites delimitados por membranas, sus contenidos no son uniformes, y existe un número de cuerpos subnucleares, constituídos por proteínas, moléculas de ARN y conglomerados de ADN únicos. El mejor conocido de estos es el nucléolo, el cual está principalmente relacionado con el ensamblaje de las subunidades de los ribosomas. Luego de ser producidas en el nucléolo, éstas se unen y forman los ribosomas en el citoplasma, que son los que traducen el ARNm.
El núcleo es una estructura dinámica, que en los organismos con mitosis abierta, se deshace durante el reparto cromosómico. Se llama núcleo interfásico al que se observa antes de la mitosis y después de ésta, ya duplicado; es decir, durante los momentos del ciclo celular que no corresponden a la mitosis. Cuando no se especifique otra cosa, las explicaciones siguientes se refieren al núcleo interfásico.
Forma, tamaño y posición
El núcleo es casi siempre una estructura esferoidal relativamente grande, cuando se la compara con los orgánulos citoplasmáticos comunes. En términos absolutos, puede medir desde menos de 1 µm (en los llamados nanoeucariontes) hasta más de 20 µm. Su volumen guarda cierta proporcionalidad con el del citoplasma.
El núcleo tiende a ocupar una posición central, pero en las células adultas de las plantas se ve desplazado a la periferia por el importante volumen del vacuoma (conjunto de vacuolas).
Número
Lo típico es que cada célula eucariota contenga un núcleo, sin embargo son frecuentes e importantes las excepciones. En los hongos también es normal la condición dicariótica (dos núcleos) en cierta fase vital, cuando después de la fusión de dos células de individuos distintos compatibles, se forma una célula dicariótica de cuya proliferación procede un micelio dicariótico. La fecundación se produce finalmente por la fusión en células específicas de esos dos núcleos.
En protistas es donde se observa mayor diversidad de casos, en éste como en otros temas básicos de la biología eucariótica. En los ciliados existen regularmente dos núcleos, el macronúcleo y el micronúcleo. En Pelomyxa pueden aparecer hasta 20.000 núcleos en la misma célula.
Los eritrocitos (glóbulos rojos) maduros de casi todos los mamíferos carecen de núcleo.
Un caso muy especial es el de la presencia de nucleomorfos; éstos son núcleos residuales del proceso de integración endosimbiótica de un eucarionte fotosintetizador como plasto secundario en otro eucarionte. Así es como a partir de un alga roja se ha constituido el plasto de los diversos cromófitos, por ejemplo las algas pardas o las diatomeas. No en estos últimos ejemplos, pero sí en otros casos, como los criptófitos, se conserva dentro del plasto un resto de citoplasma y un núcleo residual, al que se llamó nucelomorfo antes de verificar que efectivamente es un núcleo eucariótico reducido. El nucleomorfo pertenece al plasto, y el pequeño genoma que conserva tiene que ver con el control de su funcionamiento.
Sincitios
Un sincitio es una masa de protoplasma en la que coexisten varios núcleos. Cada núcleo atiende las necesidades de control de una región de citoplasma, a la que se llama enérgida. Un sincitio se constituye cuando la formación de nuevos núcleos tras la mitosis (cariocinesis) no va seguida de citocinesis, es decir, de partición del citoplasma. Lo relacionado con un sincitio se adjetiva como sincitial o como cenocítico.
La organización sincitial aparece en los tejidos animales con cierta frecuencia, siempre con ventajas específicas relacionadas con su función propia. Se observa en las fibras musculares estriadas, las células del tejido muscular esquelético, donde una sola célula de 20 µm de diámetro se extiende muchos centímetros en longitud, con núcleos regularmente espaciados a lo largo; la continuidad de la membrana plasmática facilita la contracción coordinada del citoesqueleto en toda la longitud de la célula a partir de un solo punto de estimulación. Otro caso es el del trofoblasto de la placenta de los mamíferos; la organización sincitial estorba el paso de células sanguíneas maternas que activamente podrían atravesar por entre las células de no ser sincitial, continuo, el tejido. En el desarrollo embrionario temprano, por ejemplo en insectos y en aves, cierta continuidad del citoplasma facilita por un lado la participación en el consumo de un vitelo común, y por otro la morfogénesis.
En algas filamentosas es común la condición sincitial, que en estos casos se llama organización o estructura sifonal.
Un caso especial de organización sincitial es la que representan los plasmodios, que se forman por la reunión de células antes independientes. En los protistas micetozoos las células dispersas se agregan en alguna fase vital, formando plasmodios de agregación (pseudoplasmodios) o plasmodios verdaderos por fusión. Lo mismo se observa en casos dispersos en otros protistas, como algunos cromófitos y dinoflagelados.
Estructura
El núcleo interfásico presenta al menos las siguientes partes diferenciadas:
Envoltura nuclear. Se basa en una doble membrana (2 bicapas lipídicas) reforzada por el citoesqueleto. Está perforada por poros nucleares, a través de los cuales el interior del núcleo se comunica con el citosol. La envoltura presenta ribosomas adheridos externamente y es la continuación del retículo endoplasmático rugoso. La envoltura nuclear se halla reforzada por dos armazones de filamentos intermedios, uno adosado a su superficie interna: la lámina nuclear. Y otro situado sobre la cara citosólica de la membrana externa.
Cromatina. Es la forma que toma el material hereditario durante la interfase del ciclo celular. Consiste en ADN asociado a proteínas.
Nucleoplasma, también llamado carioplasma o cariolinfa. Se trata del medio interno indiferenciado que llena el núcleo, semejante al citosol o hialoplasma, bañando a sus componentes.
Nucléolo(s). Una o más estructuras esferoidales, relacionadas con la síntesis de las principales piezas de los ribosomas y con su ensamblaje parcial. Esas piezas están formadas por ARN y proteínas básicas. Se distinguen dos porciones del nucléolo, la región granular, formada por gránulos de ARN, y la región fibrilar formada por filamentos de ARN. Una tercera región, muy difícil de observar es la denominada porción cromosómica del nucléolo, en ésta se encuentran filamentos de ADN.
Funciones
Dirige la actividad celular,ya que contiene el programa genético que dirige el desarrollo y funcionamiento de la célula.
Es la sede de la replicación (duplicación del ADN) y la transcripción (síntesis de ARN), mientras que la traducción ocurre en el citoplasma. En las células procariotas todos esos procesos coinciden en el mismo compartimento celular.
MitosiS
En biología, la mitosis (del griego mitos, hebra) es un proceso de reparto equitativo del material hereditario (ADN) característico de las células eucarióticas.[1] Normalmente concluye con la formación de dos núcleos separados (cariocinesis), seguido de la partición del citoplasma (citocinesis), para formar dos células hijas. La mitosis completa, que produce células genéticamente idénticas, es el fundamento del crecimiento, de la reparación tisular y de la reproducción asexual. La meiosis, un proceso que comparte mecanismos con la mitosis pero que no debe confundirse con ella (es otro tipo de división celular, propio de los gametos), produce células genéticamente distintas y, combinada con la fecundación, es el fundamento de la reproducción sexual.
Fases del ciclo celular
La división de las células eucarióticas es parte de un ciclo vital continuo, el ciclo celular, en el que se distinguen dos períodos mayores, la interfase, durante la cual se produce la duplicación del ADN, y la mitosis, durante la cual se produce el reparto idéntico del material antes duplicado. La mitosis es una fase relativamente corta en comparación con la duración de la interfase.
Interfase
La interfase típica se divide en tres fases:
G1: esta fase se extiende desde que la célula nace hasta que inicia la etapa S. Es la etapa en la que tiene lugar la síntesis de ARNm con la consiguiente producción de proteinas.
S: en esta fase se produce la replicación del ADN nuclear y síntesis de ARNm e histonas
G2: durante la cual también se observa síntesis de proteínas (las que constituirán los microtúbulos del haz mitótico).
Durante toda la interfase la célula crece, al producir proteínas y orgánulos citoplásmicos, preparándose así para entrar en mitosis.[2]
Mitosis
Profase
Profase: Los dos centros de origen de los microtúbulos (en verde) son los centrosomas. La cromatina ha comenzado a condensarse y se observan las cromátidas (en azul). Las estructuras en color rojo son los cinetocoros. (Micrografía obtenida utilizando marcajes fluorescentes).
Es la fase más larga de la mitosis. Se produce en ella la condensación del material genético (ADN, que en interfase existe en forma de cromatina), para formar unas estructuras altamente organizadas, los cromosomas. Como el material genético se ha duplicado previamente durante la fase S, los cromosomas replicados están formados por dos cromátidas, unidas a través del centrómero por moléculas de cohesinas.
Además, durante esta fase se inicia la formación del huso mitótico bipolar. Uno de los hechos más tempranos de la profase en las células animales es duplicación del centriolo; los dos centriolos hijos migran entonces hacia extremos opuestos de la célula. Los centriolos actúan como centros organizadores de microtúbulos, controlando la formación de unas estructuras fibrosas, los microtúbulos, mediante la polimerización de tubulina soluble.[6] De esta forma, el huso de una célula mitótica tiene dos polos que emanan microtúbulos.
En la profase tardía desaparece el nucléolo y se desorganiza la envoltura nuclear.
Prometafase
Prometafase: La membrana nuclear se ha disuelto, y los microtúbulos (verde) invaden el espacio nuclear. Los microtúbulos pueden anclar cromosomas (azul) a través de los cinetocoros (rojo) o interactuar con microtúbulos emanados por el polo opuesto.
La membrana nuclear se desensambla y los microtúbulos invaden el espacio nuclear. Esto se denomina mitosis abierta, y ocurre en la mayor parte de los organismos multicelulares. Los hongos y algunos protistas, como las algas o las tricomonas, realizan una variación denominada mitosis cerrada, en la que el huso se forma dentro del núcleo o sus microtúbulos pueden penetrar a través de la membrana nuclear intacta.[7] [8]
Cada cromosoma ensambla dos cinetocoros hermanos sobre el centrómero, uno en cada cromátida. Un cinetocoro es una estructura proteica compleja a la que se anclan los microtúbulos.[9] Aunque la estructura y la función del cinetocoro no se conoce completamente, contiene varios motores moleculares, entre otros componentes.[10] Cuando un microtúbulo se ancla a un cinetocoro, los motores se activan, utilizando energía de la hidrólisis del ATP para "ascender" por el microtúbulo hacia el centrosoma de origen. Esta actividad motora, acoplada con la polimerización/despolimerización de los microtúbulos, proporcionan la fuerza de empuje necesaria para separar más adelante las dos cromátidas de los cromosomas.[10]
Cuando el huso crece hasta una longitud suficiente, los microtúbulos asociados a cinetocoros empiezan a buscar cinetocoros a los que anclarse. Otros microtúbulos no se asocian a cinetocoros, sino a otros microtúbulos originados en el centrosoma opuesto para formar el huso mitótico.[11] La prometafase se considera a veces como parte de la profase.
Metafase
A medida que los microtúbulos encuentran y se anclan a los cinetocoros durante la prometafase, los centrómeros de los cromosomas se congregan en la "placa metafásica" o "plano ecuatorial", una línea imaginaria que es equidistante de los dos centrosomas que se encuentran en los dos polos del huso.[11] Este alineamiento equilibrado en la línea media del huso se debe a las fuerzas iguales y opuestas que se generan por los cinetocoros hermanos. El nombre "metafase" proviene del griego μετα que significa "después."
Dado que una separación cromosómica correcta requiere que cada cinetocoro esté asociado a un conjunto de microtúbulos (que forman las fibras cinetocóricas), los cinetocoros que no están anclados generan una señal para evitar la progresión prematura hacia anafase antes de que todos los cromosomas estén correctamente anclados y alineados en la placa metafásica. Esta señal activa el checkpoint de mitosis.[12]
Anafase
Cuando todos los cromosomas están correctamente anclados a los microtúbulos del huso y alineados en la placa metafásica, la célula procede a entrar en anafase (del griego ανα que significa "arriba", "contra", "atrás" o "re-").
Entonces tienen lugar dos sucesos. Primero, las proteínas que mantenían unidas ambas cromtidas hermanas (las cohesinas), son cortadas, lo que permite la separación de las cromátidas. Estas cromátidas hermanas, que ahora son cromosomas hermanos diferentes, son separados por los microtúbulos anclados a sus microtúbulos al desensamblarse, dirigiéndose hacia los centrosomas respectivos.
A continuación, los microtúbulos no asociados a cinetocoros se alargan, empujando a los centrosomas (y al conjunto de cromosomas que tienen asociados) hacia los extremos opuestos de la célula. Este movimento parece estar generado por el rápido ensamblaje de los microtúbulos.[13]
Estos dos estadios se denominan a veces anafase temprana (A) y anafase tardía (B). La anafase temprana viene definida por la separación de cromátidas hermanas, mientras que la tardía por la elongación de los microtúbulos que produce la separación de los centrosomas. Al final de la anafase, la célula ha conseguido separar dos juegos idénticos de material genético en dos grupos definidos, cada uno alrededor de un centrosoma.
Telofase
La telofase (del griego τελος, que significa "final") es la reversión de los procesos que tuvieron lugar durante profase y prometafase. Durante la telofase, los microtúbulos no unidos a cinetocoros continúan alargándose, estirando aún más la célula. Los cromosomas hermanos se encuentran cada uno asociado a uno de los polos. La membrana nuclear se reforma alrededor de ambos grupos cromosómicos, utilizando fragmentos de la membrana nuclear de la célula original. Ambos juegos de cromosomas, ahora formando dos nuevos núcleos, se descondensan de nuevo en cromatina. La cariocinesis ha terminado, pero la división celular aún no está completa.
Meiosis
En biología, meiosis (proviene del latín “hacer más pequeño”) es una de las formas de reproducción celular. Es un proceso divisional celular, en el cuál una célula diploide (2n), experimentará dos divisiones celulares sucesivas, con la capacidad de generar cuatro células haploides (n).
Este proceso se lleva a cabo en dos divisiones nucleares y citoplasmáticas, llamadas, primera y segunda división meiótica o simplemente Meiosis I y Meiosis II. Ambas comprenden Profase, Metafase, Anafase y Telofase. Durante la meiosis I los miembros de cada par homólogo de cromosomas se unen primero y luego se separan y se distribuyen en diferentes núcleos. En la Meiosis II, las cromátidas hermanas que forman cada cromosoma se separan y se distribuyen en los núcleos de las células hijas. Entre estas dos etapas sucesivas no existe la etapa S (duplicación del ADN).
La meiosis no siempre es un proceso preciso, a veces los errores en la meiosis son responsables de las principales anomalías cromosómicas. La meiosis consigue mantener constante el número de cromosomas de las células de la especie para mantener la información genética.
Proceso celular
Visión general de la meiosis. En la interfase se duplica el material genético, y se produce el fenómeno de la recombinación (representado por cromosomas rojos y azules). En meiosis I los cromosomas homólogos se reparten en dos células hijas. En meiosis II, al igual que en una mitosis, cada cromátida migra hacia un polo. El resultado son 4 células hijas haploides (n).
Los pasos preparatorios que conducen a la meiosis son idénticos en patrón y nombre a la interfase del ciclo mitótico de la célula. La interfase se divide en tres fases:
Fase G1: caracterizado por el aumento de tamaño de célula debido a la fabricación acelerada de organelos, proteínas, y otras materias celulares.
Fase S (síntesis): se replica el material genético, es decir, el ADN se replica dando origen a dos cadenas nuevas, unidas por el centrómero. Los cromosomas, que hasta el momento tenían una sola cromátida, ahora tienen dos. Se replica el 98% del ADN, el 2% restante queda sin replicar.
Fase G2: la célula continúa aumentando su biomasa.
La interfase es seguida inmediatamente por la meiosis I y II. Meiosis I consiste en la segregación de cada uno de los cromosomas homólogos, dividiendo posteriormente la célula diploide en dos células diploides pero con la mitad de cromosomas. La meiosis II consiste en desemparejar cada uno de las cromátidas del cromosoma, que se segregarán una a cada polo, con lo que tras una división se producen cuatro células haploides. Meiosis I y II están divididas en profase, metafase, anafase, y telofase, similares en propósito a sus subfases análogos en el ciclo mitótico de la célula. Por lo tanto, la meiosis abarca la interfase (G1, S, G2), la meiosis I (profase I, metafase I, anafase I, telofase I), y la meiosis II (profase II, metafase II, anafase II, telofase II).
Meiosis I
Profase I
La profase I de la primera división meiótica es la etapa más compleja del proceso y a su vez se divide en 5 subetapas, que son:
Leptoteno
La primera etapa de Profase I es la etapa del leptoteno, durante la cual los cromosomas individuales comienzan a condensar en filamentos largos dentro del núcleo. Cada cromosoma tiene un elemento axial, un armazón proteico que lo recorre a lo largo, y por el cual se ancla a la envuelta nuclear. A lo largo de los cromosomas van apareciendo unos pequeños engrosamientos denominados cromómeros.
Zigoteno
Los cromosomas homólogos comienzan a acercarse hasta quedar apareados en toda su longitud. Esto se conoce como sinapsis (unión) y el complejo resultante se conoce como bivalente o tétrada (nombre que prefieren los citogenetistas), donde los cromosomas homólogos (paternos y materno) se aparean, asociándose así cromátidas homólogas. Producto de la sinapsis, se forma una estructura observable solo con el microscopio electrónico, llamada complejo sinaptonémico, unas estructuras, generalmente esféricas, aunque en algunas especies pueden ser alargadas.
La disposición de los cromómeros a lo largo del cromosoma parece estar determinado genéticamente. Tal es así que incluso se utiliza la disposición de estos cromómeros para poder distinguir cada cromosoma durante la profase I meiótica. Además el eje proteico central pasa a formar los elementos laterales del complejo sinaptonémico, una estructura proteica con forma de escalera formada por dos elementos laterales y uno central que se van cerrando a modo de cremallera y que garantiza el perfecto apareamiento entre homólogos. En el apareamiento entre homólogos también está implicada la secuencia de genes de cada cromosoma, lo cual evita el apareamiento entre cromosomas no homólogos. Además durante el zigoteno concluye la replicación del ADN (2% restante) que recibe el nombre de zig-ADN.
Paquiteno
Una vez que los cromosomas homólogos están perfectamente apareados formando estructuras que se denominan bivalentes se produce el fenómeno de entrecruzamiento (crossing-over) en el cual las cromatidas homólogas no hermanas intercambian material genético. La recombinación genética resultante hace aumentar en gran medida la variación genética entre la descendencia de progenitores que se reproducen por vía sexual.
La recombinación genética está mediada por la aparición entre los dos homólogos de una estructura proteica de 90 nm de diámetro llamada nódulo de recombinación. En él se encuentran las enzimas que medían en el proceso de recombinación.
Durante esta fase se produce una pequeña síntesis de ADN, que probablemente está relacionada con fenómenos de reparación de ADN ligados al proceso de recombinación.
Diploteno
Los cromosomas continúan condensándose hasta que se pueden comenzar a observar las dos cromátidas de cada cromosoma. Además en este momento se pueden observar los lugares del cromosoma donde se ha producido la recombinación. Estas estructuras en forma de X reciben el nombre quiasmas. Cada quiasma se origina en un sitio de entrecruzamiento, lugar en el que anteriormente se rompieron dos cromatidas homólogas que intercambiaron material genético y se reunieron.
En este punto la meiosis puede sufrir una pausa, como ocurre en el caso de la formación de los óvulos humanos. Así, la línea germinal de los óvulos humanos sufre esta pausa hacia el séptimo mes del desarrollo embrionario y su proceso de meiosis no continuará hasta alcanzar la madurez sexual. A este estado de latencia se le denomina dictiotena.
Diacinesis
Esta etapa apenas se distingue del diploteno. Podemos observar los cromosomas algo más condensados y los quiasmas. El final de la diacinesis y por tanto de la profase I meiótica viene marcado por la rotura de la membrana nuclear. Durante toda la profase I continuó la síntesis de ARN en el núcleo. Al final de la diacinesis cesa la síntesis de ARN y desaparece el nucléolo.
Prometafase I
La membrana nuclear desaparece. Un cinetocoro se forma por cada cromosoma, no uno por cada cromátida, y los cromosomas adosados a fibras del huso comienzan a moverse. Algunas veces las tétradas son visibles al microscopio. Las cromatidas hermanas continúan estrechamente alineadas en toda su longitud, pero los cromosomas homólogos ya no lo están y su centrómeros y cinetocoros encuentran separados entre sí.
Metafase I
Los cromosomas homólogos se alinean en el plano de ecuatorial. La orientación es al azar, con cada homologo paterno en un lado. Esto quiere decir que hay un 50% de posibilidad de que las células hijas reciban el homólogo del padre o de la madre por cada cromosoma. Los microtubulos del huso de cada centríolo se unen a sus respectivos cinetocoros.
Anafase I
Los quiasmas se separan. Los microtúbulos del huso se acortan en la región del cinetocoro, con lo que se consigue remolcar los cromosomas homólogos a lados opuestos de la célula, junto con la ayuda de proteínas motoras. Ya que cada cromosoma homólogo tiene solo un cinetocoro, se forma un juego haploide (n) en cada lado. En la repartición de cromosomas homólogos, para cada par, el cromosoma materno se dirige a un polo y el paterno al contrario. Por tanto el número de cromosomas maternos y paternos que haya a cada polo varía al azar en cada meiosis. Por ejemplo, para el caso de una especie 2n = 4 puede ocurrir que un polo tenga dos cromosomas maternos y el otro los dos paternos; o bien que cada polo tenga uno materno y otro paterno.
Telofase I
Cada célula hija ahora tiene la mitad del número de cromosomas pero cada cromosoma consiste en un par de cromátidas. Los microtubulos que componen la red del huso mitótico desaparece, y una membrana nuclear nueva rodea cada sistema haploide. Los cromosomas se desenrollan nuevamente dentro de la cromatina. Ocurre la citocinesis (proceso paralelo en el que se separa la membrana celular en las células animales o la formación de esta en las células vegetales, finalizando con la creación de dos células hijas). Después suele ocurrir la intercinesis, parecido a una segunda interfase, pero no es una interfase verdadera, ya que no ocurre ninguna réplica del ADN. Este proceso es breve en todos los organismos, pero en algunos generalmente no ocurre.
Meiosis II
Profase II
Profase Temprana II
Comienza a desaparecer la envoltura nuclear y el nucleolo. Se hacen evidentes largos cuerpos filamentosos de cromatina, y comienzan a condensarse como cromosomas visibles
Profase Tardía II
Los cromosomas continúan acortándose y engrosándose. Se forma el huso entre los centríolos, que se han desplazado a los polos de la célula
Metafase II
Las fibras del huso se unen a los cinetocóros de los cromosomas. Éstos últimos se alinean a lo largo del plano ecuatorial de la célula. La primera y segunda metafase pueden distinguirse con facilidad, en la metafase I las cromatidas se disponen en haces de cuatro (tétrada) y en la metafase II lo hacen en grupos de dos (como en la metafase mitótica). Esto no es siempre tan evidente en las células vivas.
Anafase II
Las cromátidas se separan en sus centrómeros, y un juego de cromosomas se desplaza hacia cada polo. Durante la Anafase II las cromatidas, unidas a fibras del huso en sus cinetocóros, se separan y se desplazan a polos opuestos, como lo hacen en la anafase mitótica. Como en la mitosis, cada cromátida se denomina ahora cromosoma.
Telofase II
En la telofase II hay un miembro de cada par homologo en cada polo. Cada uno es un cromosoma no duplicado. Se reensamblan las envolturas nucleares, desaparece el huso acromático, los cromosomas se alargan en forma gradual para formar hilos de cromatina, y ocurre la citocinesis. Los acontecimientos de la profase se invierten al formarse de nuevo los nucleolos, y la división celular se completa cuando la citocinesis ha producidos dos células hijas. Las dos divisiones sucesivas producen cuatro núcleos haploide, cada uno con un cromosoma de cada tipo. Cada célula resultante haploide tiene una combinación de genes distinta. Esta variación genética tiene dos fuentes: 1 – Durante la meiosis, los cromosomas maternos y paternos se barajan, de modo que cada uno de cada par se distribuye al azar en los polos de la anafase I. 2 - se intercambian segmentos de ADN entre los homólogos paternos y maternos durante el entrecruzamiento.
Metabolismo
El metabolismo es el conjunto de reacciones y procesos físico-químicos que ocurren en una célula y en el organismo.[1] Estos complejos procesos interrelacionados son la base de la vida a nivel molecular, y permiten las diversas actividades de las células: crecer, reproducirse, mantener sus estructuras, responder a estímulos, etc.
El metabolismo se divide en dos procesos conjugados: catabolismo y anabolismo. Las reacciones catabólicas liberan energía; un ejemplo es la glucólisis, un proceso de degradación de compuestos como la glucosa, cuya reacción resulta en la liberación de la energía retenida en sus enlaces químicos. Las reacciones anabólicas, en cambio, utilizan esta energía liberada para recomponer enlaces químicos y construir componentes de las células como lo son las proteínas y los ácidos nucleicos. El catabolismo y el anabolismo son procesos acoplados que hacen al metabolismo en conjunto, puesto que cada uno depende del otro.
La economía que la actividad celular impone sobre sus recursos obliga a organizar estrictamente las reacciones químicas del metabolismo en vías o rutas metabólicas, donde un compuesto químico (sustrato) es transformado en otro (producto), y este a su vez funciona como sustrato para generar otro producto, siguiendo una secuencia de reacciones bajo la intervención de diferentes enzimas (generalmente una para cada sustrato-reacción). Las enzimas son cruciales en el metabolismo porque agilizan las reacciones físico-químicas, pues hacen que posibles reacciones termodinámicas deseadas pero "desfavorables", mediante un acoplamiento, resulten en reacciones favorables. Las enzimas también se comportan como factores reguladores de las vías metabólicas, modificando su funcionalidad –y por ende, la actividad completa de la vía metabólica– en respuesta al ambiente y necesidades de la célula, o según señales de otras células.
El metabolismo de un organismo determina qué sustancias encontrará nutritivas y cuáles encontrará tóxicas. Por ejemplo, algunas procariotas utilizan sulfuro de hidrógeno como nutriente, pero este gas es venenoso para los animales.[2] La velocidad del metabolismo, el rango metabólico, también influye en cuánto alimento va a requerir un organismo.
Una característica del metabolismo es la similitud de las rutas metabólicas básicas incluso entre especies muy diferentes. Por ejemplo: la secuencia de pasos químicos en una vía metabólica como el ciclo de Krebs es universal entre células vivientes tan diversas como la bacteria unicelular Escherichia coli y organismos pluricelulares como el elefante[3] . Esta estructura metabólica compartida es muy probablemente el resultado de la alta eficiencia de estas rutas, y de su temprana aparición en la historia evolutiva.[4] [5
Estructura de un lípido, el triglicérido.
La mayor parte de las estructuras que componen a los animales, plantas y microbios pertenecen a alguno de estos tres tipos de moléculas básicas: aminoácidos, glúcidos y lípidos (también denominados grasas). Como estas moléculas son vitales para la vida, el metabolismo se centra en sintetizar estas moléculas, en la construcción de células y tejidos, o en degradarlas y utilizarlas como recurso energético en la digestión. Muchas biomoléculas pueden interaccionar entre sí para crear polímeros como el ADN (ácido desoxirribonucleico) y las proteínas. Estas macromoléculas son esenciales en los organismos vivos. En la siguiente tabla se muestran los biopolímeros más comunes:
Aminoácidos y proteínas
Las proteínas están compuestas por los aminoácidos, dispuestos en una cadena lineal y unidos por enlaces peptídicos. Las enzimas son proteínas que catalizan las reacciones químicas en el metabolismo. Otras proteínas tienen funciones estructurales o mecánicas, como las proteínas del citoesqueleto que forman un sistema de andamiaje para mantener la forma de la célula.[31] [32] Las proteínas también son partícipes de la comunicación celular, la respuesta inmune, la adhesión celular y el ciclo celular.[33]
Lípidos
Los lípidos son las biomoléculas que más diversidad presentan. Su función estructural básica es formar parte de las membranas biológicas como la membrana celular, o bien como recurso energético.[33] Los lípidos son definidos normalmente como moléculas hidrófobicas o anfipáticas, que se disuelven en solventes orgánicos como la bencina o el cloroformo.[34] Las grasas son un grupo de compuestos que incluyen ácidos grasos y glicerol; una molécula de glicerol junto a tres ácidos grasos éster dan lugar a una molécula de triglicérido.[35] Se pueden dar variaciones de esta estrucutra básica, que incluyen cadenas laterales como la esfingosina de los esfingolípidos y los grupos hidrofílicos tales como los grupos fosfato en los fosfolípidos. Esteroides como el colesterol son otra clase mayor de lípidos sintetizados en las células.[36]
Carbohidratos
Los carbohidratos son aldehídos o cetonas con grupos hidroxilo que pueden existir como cadenas o anillos. Los carbohidratos son las moléculas biológicas más abundantes, y presentan varios papeles en la célula; algunos actúan como moléculas de almacenamiento de energía (almidón y glucógeno) o como componentes estructurales (celulosa en las plantas, quitina en los animales).[33] Los carbohidratos básicos son llamados monosacáridos e incluyen galactosa, fructosa, y el más importante la glucosa. Los monosacáridos pueden sintetizarse y formar polisacáridos.[37]
Nucleótidos
Los polímeros de ADN (ácido desoxirribonucléico) y ARN (ácido ribonucléico) son cadenas de nucleótidos. Estas moléculas son críticas para el almacenamiento y uso de la información genética por el proceso de transcripción y biosíntesis de proteínas[33] . Esta información se encuentra protegida por un mecanismo de reparación del ADN y duplicada por un mecanismo de replicación del ADN. Algunos virus tienen un genoma de ARN, por ejemplo el HIV, y utilizan retrotranscripción para crear ADN a partir de su genoma viral de ARN;[38] estos virus son denominados retrovirus. El ARN de ribozimas como los ribosomas es similar a las enzimas y puede catabolizar reacciones químicas. Los nucleósidos individuales son sintentizados mediante la unión de bases nitrogenadas con ribosa. Estas bases son anillos heterocíclicos que contienen nitrógeno y, según presenten un anillo o dos, pueden ser clasificadas como pirimidinas o purinas, respectivamente. Los nucleótidos también actúan como coenzimas en reacciones metabólicas de transferencia en grupo.[39]
Coenzimas
Estructura de una coenzima, el coenzima A transportando un grupo acetilo (a la izquierda de la figura, unido al S).
El metabolismo conlleva un gran número de reacciones químicas, pero la gran mayoría presenta alguno de los mecanismos de catálisis básicos de reacción de transferencia en grupo.[40] Esta química común permite a las células utilizar una pequeña colección de intermediarios metabólicos para trasladar grupos químicos funcionales entre diferentes reacciones.[39] Estos intermediarios de transferencia de grupos son denominados coenzimas. Cada clase de reacción de grupo es llevada a cabo por una coenzima en particular, que es el sustrato para un grupo de enzimas que lo producen, y un grupo de enzimas que lo consumen. Estas coenzimas son, por ende, continuamente creadas, consumidas y luego recicladas.[41]
La coenzima más importante es el adenosín trifosfato (ATP). Este nucleótido es usado para transferir energía química entre distintas reacciones químicas. Sólo hay una pequeña parte de ATP en las células, pero como es continuamente regenerado, el cuerpo humano puede llegar a utilizar su propio peso en ATP por día.[41] El ATP actúa como una conexión entre el catabolismo y el anabolismo, con reacciones catabólicas que generan ATP y reacciones anabólicas que lo consumen. También es útil para transportar grupos fosfato en reacciones de fosforilación.
Una vitamina es un compuesto orgánico necesitado en pequeñas cantidades que no puede ser sintetizado en las células. En la nutrición humana, la mayoría de las vitaminas trabajan como coenzimas modificadas; por ejemplo, todas las vitaminas hidrosolubles son fosforiladas o acopladas a nucleótidos cuando son utilizadas por las células.[42]
La nicotinamida adenina dinucleótido (NAD), un derivado de la vitamina B, es una importante coenzima que actúa como aceptor de protones. Cientos de deshidrogenasas eliminan electrones de sus sustratos y reducen el NAD+ en NADH. Esta forma reducida de coenzima es luego un sustrato para cualquier componente en la célula que necesite reducir su sustrato.[43] El NAD existe en dos formas relacionadas en la célula, NADH y NADPH. El NAD+/NADH es más importante en reacciones catabólicas, mientras que el NADP+/NADPH es principalmente utilizado en reacciones anabólicas.
Minerales y cofactores
Los elementos inorgánicos juegan un rol crítico en el metabolismo; algunos son abundantes (sodio y potasio, por ejemplo), mientras que otros actúan a concentraciones mínimas. Alrededor del 99% de la masa de un mamífero se encuentra compuesta por los elementos carbono, nitrógeno, calcio, sodio, cloro, potasio, hidrógeno, oxígeno y azufre.[44] . Los compuestos orgánicos (proteínas, lípidos y carbohidratos) contienen, en su mayoría, carbono y nitrógeno, mientras que la mayoría del oxígeno y del hidrógeno están presentes en el agua.[44]
Los elementos inorgánicos actúan como electrolitos iónicos. Los iones de mayor importancia son sodio, potasio, calcio, magnesio, cloruro y fosfato, y el ion orgánico bicarbonato. El gradiente iónico a lo largo de las membranas de la célula mantienen la presión osmótica y el pH.[45] Los iones son también críticos para nervios y músculos ya que el potencial de acción en estos tejidos es producido por el intercambio de electrolitos entre el fluido extracelular y el citosol.[46] Los electrolitos entran y salen de la célula a través de proteínas en la membrana plasmática, denominadas canales iónicos. Por ejemplo, la contracción muscular depende del movimiento del calcio, sodio y potasio a través de los canales iónicos en la membrana y los túbulos T.[47]
Los metales de transición se encuentran presentes en el organismo principalmente como zinc y hierro, que son los más abundantes.[48] [49] Estos metales son usados en algunas proteínas como cofactores y son esenciales para la actividad de enzimas como la catalasa y proteínas transportadoras del oxígeno como la hemoglobina.[50] Estos cofactores están estrechamente ligados a una proteína; a pesar de que los cofacores de enzimas pueden ser modificados durante la catálisis, siempre tienden a volver al estado original antes de que la catálisis tuviera lugar. Los micronutrientes son captados por los organismos por medio de trasportadores específicos y proteínas de almacenamiento específicas tales como la ferritina o la metalotioneína, mientras no son utilizadas.[51] [52]
Catabolismo
El catabolismo es el conjunto de procesos metabólicos que liberan energía. Estos incluyen degradación y oxidación de moléculas de alimento, así como reacciones que retienen la energía del Sol. El propósito de estás reacciones catabólicas es proveer energía, poder reductor y componentes necesitados por reacciones anabólicas. La naturaleza de estas reacciones catabólicas difiere de organismo en organismo. Sin embargo, estas diferentes formas de catabolismo dependen de reacciones de reducción-oxidación que involucran transferencia de electrones de moléculas donantes (como las moléculas orgánicas, agua, amoníaco, sulfuro de hidrógeno e iones ferrosos), a aceptores de dichos electrones como el oxígeno, el nitrato o el sulfato.[53]
En los animales, estas reacciones conllevan la degradación de moléculas orgánicas complejas a otras más simples, como dióxido de carbono y agua. En organismos fotosintéticos como plantas y cianobacteria, estas transferencias de electrones no liberan energía, pero son usadas como un medio para almacenar energía solar.[54]
El conjunto de reacciones catabólicas más común en animales puede ser separado en tres etapas distintas. En la primera, moléculas orgánicas grandes como las proteínas, polisacáridos o lípidos son digeridos en componentes más pequeños fuera de las células. Luego, estas moléculas pequeñas son llevadas a las células y convertidas en moléculas aún más pequeñas, generalmente coenzima A, que libera energía. Finalmente, el grupo acetil en la molécula de acetil CoA es oxidado a agua y dióxido de carbono, liberando energía que se retiene al reducir la coenzima nicotinamida adenina dinucleótido (NAD+) en NADH.
Digestión
Las macromoléculas como el almidón, la celulosa o las proteínas no pueden ser tomadas por las células automáticamente, por lo que necesitan que se degraden en unidades más simples antes de usarlas en el metabolismo celular. Muchas enzimas digieren estos polímeros. Estas enzimas incluyen peptidasa que digiere proteínas en aminoácidos, glicosil hidrolasas que digieren polisacáridos en disacáridos y monosacáridos, y lipasas que digieren los triglicéridos en ácidos grasos y glicerol.
Los microbios simplemente secretan enzimas digestivas en sus alrededores[55] [56] mientras que los animales secretan estas enzimas desde células especializadas al aparato digestivo.[57] Los aminoácidos, monosacáridos, y triglicéridos liberados por estas enzimas extracelulares son absorbidos por las células mediante proteínas específicas de transporte.[58] [59]
Energía de compuestos orgánicos
El catabolismo de carbohidratos es la degradación de los hidratos de carbono en unidades menores. Los carbohidratos son usualmente tomados por la célula una vez que fueron digeridos en monosacáridos.[60] Una vez dentro de la célula, la ruta de degradación es la glucólisis, donde los azúcares como la glucosa y la fructosa son transformados en piruvato y algunas moléculas de ATP son generadas.[61] El piruvato o ácido pirúvico es un intermediario en varias rutas metabólicas, pero la mayoría es convertido en acetil CoA y cedido al ciclo de Krebs. Aunque más ATP es generado en el ciclo, el producto más importante es el NADH, sintetizado a partir del NAD+ por la oxidación del acetil-CoA. La oxidación libera dióxido de carbono como producto de desecho. Una ruta alternativa para la degradación de la glucosa es la ruta pentosa-fosfato, que reduce la coenzima NADPH y produce azúcares de 5 carbonos como la ribosa, el azúcar que forma parte de los ácidos nucleicos.
Las grasas son catalizadas por la hidrólisis a ácidos grasos y glicerol. El glicerol entra en la glucólisis y los ácidos grasos son degradados por beta oxidación para liberar acetil CoA, que es luego cedido al nombrado ciclo de Krebs. Debido a sus proporciones altas del grupo metileno, los ácidos grasos liberan más energía en su oxidación que los carbohidratos, ya que los carbohidratos como la glucosa tienen más oxígeno en sus estructuras.
Los aminoácidos son usados principalmente para sintentizar proteínas y otras biomoléculas; sólo los excedentes son oxidados a urea y dióxido de carbono como fuente de energía.[62] Esta ruta oxidativa empieza con la eliminación del grupo amino por una aminotransferasa. El grupo amino es cedido al ciclo de la urea, dejando un esqueleto carbónico en forma de cetoácido.[63] Los aminoácidos glucogénicos pueden ser transformados en glucosa mediante gluconeogénesis.[64]
Fosforilación oxidativa
En la fosforilación oxidativa, los electrones liberados de moléculas de alimento en rutas como el ciclo de Krebs son transferidas con oxígeno, y la energía es liberada para sintetizar adenosín trifosfato. Esto se da en las células eucariotas por una serie de proteínas en las membranas de la mitocondria llamadas cadena de transporte de electrones. En las células procariotas, estas proteínas se encuentran en la membrana interna.[65] Estas proteínas utilizan la energía liberada de la oxidación del electrón que lleva la coenzima NADH para bombear protones a lo largo de la membrana.[66]
Los protones bombeados fuera de la mitocondria crean una diferencia de concentración a lo largo de la membrana, lo que genera un gradiente electroquímico.[67] Esta fuerza hace que vuelvan a la mitocondria a través de una subunidad de la ATP-sintasa. El flujo de protones hace que la subunidad menor gire, lo que produce que el sitio activo fosforile al adenosín difosfato (ADP) y lo convierta en ATP.[41]
Energía de compuestos inorgánicos
Las procariotas poseen un tipo de metabolismo donde la energía se obtiene a partir de un compuesto inorgánico. Estos organismos utilizan hidrógeno,[68] compuestos del azufre reducidos (como el sulfuro, sulfuro de hidrógeno y tiosulfato),[69] óxidos ferrosos[70] o amoníaco[71] como fuentes de poder reductor y obtienen energía de la oxidación de estos compuestos utilizando como aceptores de electrones oxígeno o nitrito.[72] Estos procesos microbióticos son importantes en ciclos biogeoquímicos como la nitrificación y la desnitrificación, esenciales para la fertilidad del suelo[73] [74]
Energía de la luz
La energía solar es captada por plantas, cianobacterias, bacterias púrpuras, bacterias verdes del azufre y algunos protistas. Este proceso está ligado a la conversión del dióxido de carbono en compuestos orgánicos, como parte de la fotosíntesis.[75] [76]
La captura de energía solar es un proceso similar en principio a la fosforilación oxidativa, ya que almacena energía en gradientes de concentración de protones, que da lugar a la síntesis de ATP.[41] Los eletrones necesarios para llevar a cabo este transporte de protones provienen de una serie de proteínas denominadas centro de reacción fotosintética. Estas estructuras son clasificadas en dos dependiendo de su pigmento, siendo las bacterias quienes tienen un solo grupo, mientras que en las plantas y cianobacterias pueden ser dos.[77]
En las plantas, el fotosistema II usa energía solar para obtener los electrones del agua, liberando oxígeno como producto de desecho. Los electrones luego fluyen hacia el complejo del citocromo b6f, que usa su energía para bombear protones a lo largo de la membrana tilacoidea del cloroplasto.[78] Estos protones se mueven a través de la ATP-sintasa, mediante el mismo mecanismo explicado anteriormente. Los electrones luego fluyen por el fotosistema I y pueden ser utilizados para reducir la coenzima NADP+, que será utilizado en el ciclo de Calvin, o recicladas para la futura generación de ATP.[79]
Anabolismo
El anabolismo es el conjunto de procesos metabólicos constructivos en donde la energía liberada por el catabolismo es utilizada para sintetizar moléculas complejas. En general, las moléculas complejas que dan lugar a estructuras celulares son construidas a partir de precursores simples. El anabolismo involucra tres facetas. Primero, la producción de precursores como aminoácidos, monosacáridos, isoprenoides y nucleótidos; segundo, su activación en reactivos usando energía del ATP; y tercero, el conjunto de estos precursores en moléculas más complejas como proteínas, polisacáridos, lípidos y ácidos nucleicos.
Los organismos difieren en cuántas moléculas pueden sintetizar por sí mismos en sus células. Los organismos autótrofos, como las plantas, pueden construir moléculas orgánicas complejas y proteínas por sí mismos a partir moléculas simples como dióxido de carbono y agua. Los organismos heterótrofos, en cambio, requieren de una fuente de sustancias más complejas, como monosacáridos y aminoácidos, para producir estas moléculas complejas. Los organismos pueden ser clasificados por su fuente de energía:
Fotoautótrofos y fotoheterótrofos, que obtienen la energía del Sol.
Quimioheterótrofos y quimioautótrofos, que obtienen la energía mediante reacciones oxidativas.
Fijación del carbono
La fotosíntesis es la síntesis de glucosa a partir de energía solar, dióxido de carbono (CO2) y agua (H2O), con oxígeno como producto de desecho. Este proceso utiliza el ATP y el NADPH producido por los centros de reacción fotosintéticos para convertir el CO2 en 3-fosfoglicerato, que puede ser convertido en glucosa. Esta reacción de fijación del CO2 es llevada a cabo por la enzima RuBisCO como parte del ciclo de Calvin.[80] Se dan tres tipos de fotosíntesis en las plantas; fijación del carbono C3, fijación del carbono C4 y fotosíntesis CAM. Estos difieren en la vía que el CO2 sigue en el ciclo de Calvin, con plantas C3 que fijan el CO2 directamente, mientras que las fotosínteis C4 y CAM incorporan el CO2 en otros compuestos primero como adaptaciones para soportar la luz solar intensa y las condiciones secas.[81]
En procariotas fotosintéticas, los mecanismos de la fijación son más diversos. El CO2 puede ser fijado por el ciclo de Calvin, y asimismo por el Ciclo de Krebs inverso,[82] o la carboxilación del acetil-CoA.[83] [84] Los quimioautótrofos también pueden fijar el CO2 mediante el ciclo de Calvin, pero utilizan la energía de compuestos inorgánicos para llevar a cabo la reacción.[85]
Carbohidratos
En el anabolismo de carbohidratos, se pueden sintetizar ácidos orgánicos simples desde monosacáridos como la glucosa y luego sintetizar polisacáridos como el almidón. La generación de glucosa desde compuestos como el piruvato, el ácido láctico, el glicerol y los aminoácidos es denominada gluconeogénesis. La gluconeogénesis transforma piruvato en glucosa-6-fosfato a través de una serie de intermediarios, muchos de los cuales son compartidos con la glucólisis.[61] Sin embargo, esta ruta no es simplemente la inversa a la glucólisis, ya que varias etapas son catalizadas por enzimas no glucolíticas. Esto es importante a la hora de evitar que ambas rutas estén activas a la vez dando lugar a un ciclo fútil.[86] [87]
A pesar de que la grasa es una forma común de almacenamiento de energía, en los vertebrados como los humanos, los ácidos grasos no pueden ser transformados en glucosa por gluconeogénesis, ya que estos organismos no pueden convertir acetil-CoA en piruvato.[88] Como resultado, tras un tiempo de inanición, los vertebrados necesitan producir cuerpos cetónicos desde los ácidos grasos para reemplazar la glucosa en tejidos como el cerebro, que no puede metabolizar ácidos grasos.[89] En otros organismos como las plantas y las bacterias, este problema metabólico es solucionado utilizando el ciclo del glioxilato, que sobrepasa la descarboxilación en el ciclo de Krebs y permite la transformación de acetil-CoA en ácido oxalacético, el cual puede ser utilizado en la síntesis de glucosa.[13] [88]
Los polisacáridos y los glicanos son sintetizados por medio de una adición secuencial de monosacáridos llevada a cabo por glicosil-transferasas de un donador reactivo azúcar-fosfato a un aceptor como el grupo hidroxilo en el polisacárido que se sintetiza. Como cualquiera de los grupos hidroxilos del anillo de la sustancia puede ser aceptor, los polisacáridos producidos pueden tener estructuras ramificadas o lineales.[90] Estos polisacáridos producidos pueden tener funciones metabólicas o estructurales por sí mismos o también pueden ser transferidos a lípidos y proteínas por medio de enzimas.[91] [92]
Ácidos grasos, isoprenoides y esteroides
Versión simplificada de la síntesis de esteroides con los intermediarios de IPP (Isopentenil pirofosfato), DMAPP (Dimetilalil pirofosfato), GPP (Geranil pirofosfato) y escualeno. Algunos son omitidos para mayor claridad.
Los ácidos grasos se sintentizan al polimerizar y reducir unidades de acetil-CoA. Las cadenas en los ácidos grasos son extendidas por un ciclo de reacciones que agregan el grupo acetil, lo reducen a alcohol, deshidratan a un grupo alqueno y luego lo reducen nuevamente a un grupo alcano. Las enzimas de la síntesis de ácidos grasos se dividen en dos grupos: en los animales y hongos, las reacciones de la síntesis son llevadas a cabo por una sola proteína multifuncional tipo I,[93] mientras que en plástidos de plantas y en bacterias son las enzimas tipo II por separado las que llevan a cabo cada etapa en la ruta.[94] [95]
Los terpenos e isoprenoides son clases de lípidos que incluyen carotenoides y forman la familia más amplia de productos naturales de la planta.[96] Estos compuestos son sintentizados por la unión y modificación de unidades de isopreno donadas por los precursores reactivos pirofosfosfato isopentenil y pirofosfato dimetilalil.[97] . Estos precursores pueden sintentizarse de diversos modos. En animales y archaeas, estos compuestos se sintentizan a partil de acetil-CoA,[98] mientras que en plantas y bacterias se hace a partir de piruvato y gliceraldehído 3-fosfato como sustratos.[99] [97] Una reacción que usa estos donadores isoprénicos activados es la biosíntesis de esteroides. En este caso, las unidades de isoprenoides son unidas covalentemente para formar escualeno, que se pliega formando una serie de anillos dando lugar a una molécula denominada lanosterol.[100] El lanosterol puede luego ser transformado en esteroides como el colesterol.
Proteínas
La habilidad de los organismos para sintetizar los 20 aminoácidos conocidos varía. Las bacterias y las plantas pueden sintetizar los 20, pero los mamíferos pueden sintetizar solo los diez aminoácido no esenciales.[33] Por ende, los aminoácidos esenciales deben ser obtenido del alimento. Todos los aminoácidos son sintetizados por intermediarios en la glucólisis y el ciclo de Krebs. El nitrógeno es obtenido por el ácido glutámico y la glutamina. La síntesis de aminoácidos depende en la formación apropiada del ácido alfa-keto, que luego es transaminado para formar un aminoácido.[101]
Los aminoácidos son sintetizados en proteínas al ser unidos en una cadena por enlaces peptídicos. Cada proteína diferente tiene una secuencia única e irrepetible de aminoácidos: esto es la estructura primaria. Los aminoácidos pueden formar una gran variedad de proteínas dependiendo de la secuencia de estos en la proteína. Las proteínas son constituidas por aminoácidos que han sido activados por la adición de un ARNt a través de un enlace éster.[102] El aminoacil-ARNt es entonces un sustrato para el ribosoma, que va añadiendo los residuos de aminoácidos a la cadena proteica, en base a la secuencia de información que va "leyendo" el ribosoma en una molécula de ARN mensajero.[103]
Síntesis de nucleótidos
Los nucleótidos son sintetizados a partir de aminoácidos, dióxido de carbono y ácido fórmico en rutas que requieren una cantidad mayor de energía metabólica.[104] En consecuencia, la mayoría de los organismos tienen un sistema eficiente para resguardar los nucleótidos preformados.[104] [105] Las purinas son sintetizadas como nucleósidos (bases unidas a ribosa). Tanto la adenina como la guanina son sintetizadas a partir de un precursor nucleósido, la inosina monofosfato, que es sintetizada usando átomos de los aminoácidos glicina, glutamina y ácido aspártico; también ocurre lo mismo con el HCOO− que es transferido desde la coenzima tetrahidrofolato. Las pirimidinas, en cambio, son sintetizadas desde el ácido orótico, que a su vez es sintetizado a partir de la glutamina y el aspartato.[106
Respiración celular
La respiración celular es el conjunto de reacciones bioquímicas que ocurre en la mayoría de las células, en las que el ácido pirúvico producido por la glucólisis se desdobla a dióxido de carbono (CO2) y agua (H2O) y se producen 38 moléculas de ATP.
Su fórmula general es:
C6H12O6 + 6 O2 ----> 6 CO2 + 6H2O y se liberan 38 moléculas de ATP
En las células eucariotas la respiración se realiza en las mitocondrias y ocurre en tres etapas que son estos:
Oxidación del ácido pirúvico.
Ciclo de los ácidos tricarboxílicos (ciclo de Krebs)
Cadena respiratoria y fosforilación oxidativa del ADP a ATP.
La respiración celular es una parte del metabolismo, concretamente del catabolismo, en la cual la energía contenida en distintas biomoléculas, como los glúcidos, es liberada de manera controlada. Durante la respiración una parte de la energía libre desprendida en estas reacciones exotérmicas, es incorporada a la molécula de ATP, que puede ser a continuación utilizado en los procesos endotérmicos, como son los de mantenimiento y desarrollo del organismo (anabolismo).
La respiración celular podría dividirse en dos tipos, según el papel atribuido al oxígeno:
Respiración aeróbica: Hace uso del O2 como aceptor último de los electrones desprendidos de las sustancias orgánicas. Es la forma más extendida, propia de una parte de las bacterias y de los organismos eucariontes, cuyas mitocondrias derivan de aquéllas. Se llama aerobios a los organismos que, por este motivo, requieren O2.
Respiración anaeróbica: No interviene el oxígeno, sino que se emplean otros aceptores finales de electrones, muy variados, generalmente minerales y, a menudo, subproductos del metabolismo de otros organismos. Un ejemplo de aceptor es el SO42- (anión sulfato), que en el proceso queda reducido a H2S:
La respiración anaeróbica es propia de procariotas diversos, habitantes sobre todo de suelos y sedimentos, y algunos de estos procesos son importantes en los ciclos biogeoquímicos de los elementos. No debe confundirse la respiración anaerobia con la fermentación, que es una oxidación-reducción interna a la molécula procesada, en la que no se requiere ni O2 ni ningún otro aceptor de electrones.
RESPIRACIÓN ANAERÓBICA:
La respiración anaeróbica es un proceso biológico de oxidorreducción de azúcares y otros compuestos. Lo realizan exclusivamente algunos grupos de bacterias.
En la respiración anaeróbica no se usa oxígeno sino para la misma función se emplea otra sustancia oxidante distinta, como el sulfato.No hay que confundir la respiración anaeróbica con la fermentación, aunque estos dos tipos de metabolismo tienen en común el no ser dependiente del oxigeno.
Todos los posibles aceptores en la respiración anaeróbica tienen un potencial de reducción menor que el O2, por lo que se genera menor energía en el proceso.
ETAPAS:
* Glucólisis
* Fermentación
GLUCÓLISIS .- También denominado glicólisis, es la secuencia metabólica en la que se oxida en la glucólisis, cuando hay ausencia de oxígeno, la glucólisis es la única vía que produce ATP en los animales.
Está presente en todas las formas de vías actuales. Es la primera parte del metabolismo energético y en las células eucariotas en donde ocurre el citoplasma.
Por lo tanto es una secuencia compleja de reacciones que se efectuan en el citosol de una celula mediante las cuales una molécula de glucosa se desdobla en dos moléculas de acido piruvico. De manera que la glucolisis consta de dos pasos principales:
*Activacion de la glucosa.
* Producción de energía.
Ciclo de Krebs
El ciclo de Krebs (también llamado ciclo del ácido cítrico o ciclo de los ácidos tricarboxílicos) es una ruta metabólica, es decir, una sucesión de reacciones químicas, que forman parte de la respiración celular en todas las células aerobias. En organismos aeróbicos, el ciclo de Krebs es parte de la vía catabólica que realiza la oxidación de hidratos de carbono, ácidos grasos y aminoácidos hasta producir CO2, liberando energía en forma utilizable (poder reductor y GTP).
El metabolismo oxidativo de glúcidos, grasas y proteínas frecuentemente se divide en tres etapas, de las cuales, el ciclo de Krebs supone la segunda. En la primera etapa, los carbonos de estas macromoléculas dan lugar a moléculas de acetil-CoA de dos carbonos, e incluye las vías catabólicas de aminoácidos (p. ej. desaminación oxidativa), la beta oxidación de ácidos grasos y la glucólisis. La tercera etapa es la fosforilación oxidativa, en la cual el poder reductor (NADH y FADH2) generado se emplea para la síntesis de ATP según la teoría del acomplamiento quimiosmótico.
El ciclo de Krebs también proporciona precursores para muchas biomoléculas, como ciertos aminoácidos. Por ello se considera una vía anfibólica, es decir, catabólica y anabólica al mismo tiempo.
Hoy día sabemos que la mitosis es el proceso de division celular mediante el cual el núcleo y el citoplasma se dividen en dos originando dos celulas hijas con el mismo contenido heredoitario que la celula madre.
ResponderEliminarDe tal modo todos los organismos esn formados por celulas desde los seres unicelulares hasta el hombre. Como todo se vivo la celula envejece y muere por tanto debe ser sustituida por otra, todas las celulas somaticas de los seres vivos se dividen por mitosis, este proceso se inicia por uina serie de transformaciones de la estructura y forma del núcleo que tiene por finalidad transmitir los caracteres hereditarios a las celulas hijas.
En segundo plano la meiosis es un tipo de division celular durante la cual la celula madre origina las celulas hijas con la mitad del numero de cromosomas.
Aunque la meiosis se efectua en forma ininterrumpida como un proceso unico y continuo para su estudio se han divido en fases. las fases que tienen lugar en la meiosis se parecen a las de la mitosis, la meiosis ha evolucionado de la mitosis y utiliza en gran parte el proceso de división celular.
BACHILLER:
OLYENNIRET ARTEAGA
INGENIERÍA AGRONOMA "G"
LEYDA MONSALVE
ResponderEliminarMitosis
Las plantas y los animales están formados por miles de millones de células individuales organizadas en tejidos y órganos que cumplen funciones específicas. Todas las células de cualquier planta o animal han surgido a partir de una única célula inicial —el óvulo fecundado— por un proceso de división. La mitosis es la división nuclear asociada a la división de las células somáticas – células de un organismo eucariótico que no van a convertirse en células sexuales. Una célula mitótica se divide y forma dos células hijas idénticas, cada una de las cuales contiene un juego de cromosomas idéntico al de la célula parental. Después cada una de las células hijas vuelve a dividirse de nuevo, y así continúa el proceso. Salvo en la primera división celular, todas las células crecen hasta alcanzar un tamaño aproximado al doble del inicial antes de dividirse. En este proceso se duplica el número de cromosomas (es decir, el ADN) y cada uno de los juegos duplicados se desplaza sobre una matriz de microtúbulos hacia un polo de la célula en división, y constituirá la dotación cromosómica de cada una de las dos células hijas que se forman.
Meosis
Los organismos superiores que se reproducen de forma sexual se forman a partir de la unión de dos células sexuales especiales denominadas gametos. Los gametos se originan mediante meiosis, proceso de división de las células germinales. La meiosis se diferencia de la mitosis en que sólo se transmite a cada célula nueva un cromosoma de cada una de las parejas de la célula original. Por esta razón, cada gameto contiene la mitad del número de cromosomas que tienen el resto de las células del cuerpo. Cuando en la fecundación se unen dos gametos, la célula resultante, llamada cigoto, contiene toda la dotación doble de cromosomas. La mitad de estos cromosomas proceden de un progenitor y la otra mitad del otro.
Metabolismo
El metabolismo se divide en dos procesos conjugados: catabolismo y anabolismo. Las reacciones catabólicas liberan energía; un ejemplo es la glucólisis, un proceso de degradación de compuestos como la glucosa, cuya reacción resulta en la liberación de la energía retenida en sus enlaces químicos. Las reacciones anabólicas, en cambio, utilizan esta energía liberada para recomponer enlaces químicos y construir componentes de las células como lo son las proteínas y los ácidos nucleicos. El catabolismo y el anabolismo son procesos acoplados que hacen al metabolismo en conjunto, puesto que cada uno depende del otro.
Respiracion
La respiración es un proceso que se realiza constantemente, está implícito en la vida del ser humano; sin embargo, la mayoría de la gente no sabe respirar aprovechando al máximo esta función vital. Para emitir la voz adecuadamente es importantísimo utilizar correctamente este recurso.
La respiración es simplemente la acción de tomar oxígeno del aire y expulsar de nuestro cuerpo el dióxido de carbono.
Los movimientos respiratorios son: inhalación, pausa y exhalación. La inhalación consiste en tomar aire por la nariz lenta y profundamente, la pausa permite conservar el aire y la exhalación ocurre cuando el aire sale de la boca.
La capacidad de inhalar y exhalar determinada cantidad de aire, se llama capacidad vital; ésta es la que aprovecha al máximo el cantante para mejorar su voz.
Como hemos venido tratando, sabemos que el núcleo celular es una región de las células eucariota y procariotas en las que se concentra el ADN rodeado por una doble unidad de membrana, con la diferencia que en las eucariota se encuentra disperso en el citoplasma y que el mismo tiene como función mantener la integridad de estos genes y controlar las actividades celulares a través de la expresión génica, la cual es el proceso por medio del cual todos los organismos procariotas y eucariota transforman la información codificada en los ácidos nucleicos en las proteínas necesarias para su desarrollo y funcionamiento.
ResponderEliminarTambién debemos tomar en cuenta que para el funcionamiento de un organismo existe una división celular las cuales son:
• La meiosis: es un tipo de división celular presente en los organismos con reproducción sexual. En muchos seres unicelulares la reproducción es asexual, es decir, directamente por división mitótica. Pero en la mayoría de los organismos pluricelulares, la reproducción es sexual, mediante gametos femeninos y gametos masculinos que fusionándose en un cigoto darán origen a uno nuevo organismo.
La meiosis es el mecanismo que evita que se duplique el número de cromosomas debido a la unión de los gametos masculino y femenino.
Esto sucede ya que en la meiosis se producen dos divisiones consecutivas dando lugar a la reducción a la mitad del número de cromosomas originándose cuatro células haploide (4 células con n cromosomas).
Como consecuencia de la reproducción sexual, los hijos son genéticamente distintos de sus progenitores.
• La mitosis: es la división del núcleo celular y la correspondiente segregación cromosómica en dos núcleos hijos, que irá seguida, si se trata de una división celular, de la división del citoplasma o citocinesis. Este proceso se da en células eucariotas (porque son las que tienen núcleo verdadero) y, dentro de éstas, en las células somáticas, que son las células comunes del cuerpo. En el caso de los gametos o células sexuales (óvulo y espermatozoide, en los humanos), el proceso que se sigue es distinto: la meiosis.
Es éste un proceso clave para la vida, dado que asegura que las dos células resultantes de una división celular tengan un contenido genético idéntico..
Marlenys Villanueva
C.I:19722682
Ing.: agrónoma
Sección: G
el nucleo es el centro de control de la celula,pues contiene todas la informacion sobre su funcionamiento y de todo los organismo a lo que esta pertenece.y esta rodeado por una membrana nuclear.
ResponderEliminarla mitosis es un proceso de reparto equitativo del material hereditario (ADN) característico de las células eucarióticas.[1] Normalmente concluye con la formación de dos núcleos separados (cariocinesis), seguido de la partición del citoplasma (citocinesis), para formar dos células hijas. La mitosis completa, que produce células genéticamente idénticas, es el fundamento del crecimiento, de la reparación tisular y de la reproducción asexual. La meiosis, un proceso que comparte mecanismos con la mitosis pero que no debe confundirse con ella (es otro tipo de división celular, propio de los gametos), produce células genéticamente distintas y, combinada con la fecundación, es el fundamento de la reproducción sexual.
ANTONIO CRUCES
CI:20042703
La mitosis es la división nuclear asociada a la división de las células somáticas Una célula mitótica se divide y forma dos células hijas idénticas.
ResponderEliminarExisten cuatro fases durante la mitosis que son:
1_Profase: en este huso cromático empieza a formarse fuera del núcleo celular, mientras los cromosomas se condensan. Este rompe la envoltura celular y los microtúbulos del huso capturan los cromosomas.
2_Metafase: en esta Los cromosomas se alinean en un punto medio formando una placa metafísica.
3_Anafase: aquí Las cromátidas hermanas se separan y son conducidas a los polos opuestos del huso, mientras que el alargamiento del huso aumenta más la separación de los polos.
4_Telofase: esta ultima El huso continúa alargándose mientras los cromosomas van llegando a los polos y se liberan de los microtúbulos del huso;
Mientras que la meiosis, es aquel proceso que comparte mecanismos con la mitosis pero esta no debe confundirse con ella puesto q es otro tipo de la división celular, propio de los gametos, ya que produce células distintas.
Metabolismo: es el conjunto de reacciones y procesos físico-químicos los cuales ocurren en una célula y en el organismo este se divide en dos procesos conjugados: catabolismo y anabolismo
El anabolismo El anabolismo es el responsable de La formación de los componentes celulares y tejidos corporales esta encargado de la síntesis de moléculas orgánicas es decir biomoléculas esta es también una de las dos partes del metabolismo.
El catabolismo conjunto de procesos metabólicos que liberan energía es el proceso inverso del anabolismo
El núcleo celular es una estructura característica de las células eucariota. La función del núcleo es mantener la integridad de estos genes y controlar las actividades celulares a través de la expresión genética. La mitosis es un proceso de reparto equitativo del material hereditario, la mitosis completa, que produce células genéticamente idénticas, es el fundamento del crecimiento, de la reparación tisular y de la reproducción asexual. La meiosis, un proceso que comparte mecanismos con la mitosis pero que no debe confundirse con ella es decir la meiosis es una de las formas de reproducción celular. El metabolismo es el conjunto de reacciones y procesos físico-químicos que ocurren en una célula y en el organismo. La respiración es una parte del metabolismo y es el conjunto de reacciones bioquímicas que ocurren en la mayoría de las células.
ResponderEliminarIsmary Zapata
CI: 19.889.991
En cuanto al núcleo celular, este es una estructura característica de las células eucariotas. La función del núcleo es mantener la integridad de estos genes y controlar las actividades celulares a través de la expresión génica. El núcleo es casi siempre una estructura esferoidal relativamente grande, cuando se la compara con los orgánulos citoplasmáticos comunes. En términos absolutos, puede medir desde menos de 1 µm (en los llamados nanoeucariontes) hasta más de 20 µm. típico es que cada célula eucariota contenga un núcleo, sin embargo son frecuentes e importantes las excepciones.
ResponderEliminarEl núcleo interfásico presenta al menos las siguientes partes diferenciadas:
Envoltura nuclear. Se basa en una doble membrana (2 bicapas lipídicas) reforzada por el citoesqueleto.
Cromatina. Es la forma que toma el material hereditario durante la interfase del ciclo celular. Consiste en ADN asociado a proteínas.
Nucleoplasma, también llamado carioplasma o cariolinfa.
Mitosis.
Es un proceso de reparto equitativo del material hereditario (ADN) característico de las células eucarióticas, La interfase típica se divide en tres fases:
G1: esta fase se extiende desde que la célula nace hasta que inicia la etapa S. Es la etapa en la que tiene lugar la síntesis de ARNm con la consiguiente producción de proteinas.
S: en esta fase se produce la replicación del ADN nuclear y síntesis de ARNm e histonas
G2: durante la cual también se observa síntesis de proteínas (las que constituirán los microtúbulos del haz mitótico).
Durante toda la interfase la célula crece, al producir proteínas y orgánulos citoplásmicos, preparándose así para entrar en mitosis
Profase: Los dos centros de origen de los microtúbulos (en verde) son los centrosomas.
Prometafase: La membrana nuclear se ha disuelto, y los microtúbulos (verde) invaden el espacio nuclear. Los microtúbulos pueden anclar cromosomas (azul) a través de los cinetocoros (rojo) o interactuar con microtúbulos emanados por el polo opuesto.
La membrana nuclear se desensambla y los microtúbulos invaden el espacio nuclear.
Meiosis.
Es una de las formas de reproducción celular. Es un proceso divisional celular, en el cuál una célula diploide (2n), experimentará dos divisiones celulares sucesivas, con la capacidad de generar cuatro células haploides (n).
Metabolismo
El metabolismo es el conjunto de reacciones y procesos físico-químicos que ocurren en una célula y en el organismo. El metabolismo se divide en dos procesos conjugados: catabolismo y anabolismo. Las reacciones catabólicas liberan energía; un ejemplo es la glucólisis, un proceso de degradación de compuestos como la glucosa, cuya reacción resulta en la liberación de la energía retenida en sus enlaces químicos. Las reacciones anabólicas, en cambio, utilizan esta energía liberada para recomponer enlaces químicos y construir componentes de las células como lo son las proteínas y los ácidos nucleicos.
El metabolismo de un organismo determina qué sustancias encontrará nutritivas y cuáles encontrará tóxicas. Por ejemplo, algunas procariotas utilizan sulfuro de hidrógeno como nutriente, pero este gas es venenoso para los animales.
Milenis Pirona
19543603
Ing. Agrónoma
Sección: G.
Buenas noches. El núcleo celular es una estructura característica de las células eucariotas. Contiene la mayor parte del material genético celular, organizado en cromosomas, basados cada uno en una hebra de ADN con acompañamiento de una gran variedad de proteínas, como las histonas. Los genes que se localizan en estos cromosomas constituyen el genoma nuclear de la célula eucariótica.
ResponderEliminarLo típico es que cada célula eucariota contenga un núcleo, sin embargo son frecuentes e importantes las excepciones. En los hongos también es normal la condición dicariótica (dos núcleos) en cierta fase vital, cuando después de la fusión de dos células de individuos distintos compatibles, se forma una célula dicariótica de cuya proliferación procede un micelio dicariótico. La fecundación se produce finalmente por la fusión en células específicas de esos dos núcleos.
Mitosis.es un proceso de reparto equitativo del material hereditario (ADN) característico de las células eucarióticas.[1] Normalmente concluye con la formación de dos núcleos separados (cariocinesis), seguido de la partición del citoplasma (citocinesis), para formar dos células hijas. La mitosis completa, que produce células genéticamente idénticas, es el fundamento del crecimiento, de la reparación tisular y de la reproducción asexual. La meiosis, un proceso que comparte mecanismos con la mitosis pero que no debe confundirse con ella (es otro tipo de división celular, propio de los gametos), produce células genéticamente distintas y, combinada con la fecundación, es el fundamento de la reproducción sexual.
La división de las células eucarióticas es parte de un ciclo vital continuo, el ciclo celular, en el que se distinguen dos períodos mayores, la interfase, durante la cual se produce la duplicación del ADN, y la mitosis, durante la cual se produce el reparto idéntico del material antes duplicado. La mitosis es una fase relativamente corta en comparación con la duración de la interfase.
Meiosis
En cuanto a la meiosis,es una de las formas de reproducción celular. Es un proceso divisional celular, en el cuál una célula diploide (2n), experimentará dos divisiones celulares sucesivas, con la capacidad de generar cuatro células haploides (n).
Este proceso se lleva a cabo en dos divisiones nucleares y citoplasmáticas, llamadas, primera y segunda división meiótica o simplemente Meiosis I y Meiosis II. Ambas comprenden Profase, Metafase, Anafase y Telofase. Durante la meiosis I los miembros de cada par homólogo de cromosomas se unen primero y luego se separan y se distribuyen en diferentes núcleos. En la Meiosis II, las cromátidas hermanas que forman cada cromosoma se separan y se distribuyen en los núcleos de las células hijas. Entre estas dos etapas sucesivas no existe la etapa S (duplicación del ADN).
Metabolismo: El metabolismo se divide en dos procesos conjugados: catabolismo y anabolismo. Las reacciones catabólicas liberan energía; un ejemplo es la glucólisis, un proceso de degradación de compuestos como la glucosa, cuya reacción resulta en la liberación de la energía retenida en sus enlaces químicos. Las reacciones anabólicas, en cambio, utilizan esta energía liberada para recomponer enlaces químicos y construir componentes de las células como lo son las proteínas y los ácidos nucleicos.Los lípidos son las biomoléculas que más diversidad presentan. Su función estructural básica es formar parte de las membranas biológicas como la membrana celular, o bien como recurso energético.
El catabolismo es el conjunto de procesos metabólicos que liberan energía. Estos incluyen degradación y oxidación de moléculas de alimento, así como reacciones que retienen la energía del Sol. El propósito de estás reacciones catabólicas es proveer energía, poder reductor y componentes necesitados por reacciones anabólicas.
Ines Coronel.
Ing. Agrónoma.
Sección G.
La mitosis es el tipo de división celular por el cual se conservan los orgánulos y la información genética contenida en sus cromosomas, que pasa de esta manera a las células hijas resultantes de la mitosis. La mitosis es igualmente un verdadero proceso de multiplicación celular que participa en el desarrollo, el crecimiento y la regeneración del organismo. Este proceso tiene lugar por medio de una serie de operaciones sucesivas que se desarrollan de una manera continua, y que para facilitar su estudio han sido separadas en varias etapas.
ResponderEliminarocurre durante la mitosisEl resultado esencial de la mitosis es la continuidad de la información hereditaria de la célula madre en cada una de las dos células hijas. El genoma se compone de una determinada cantidad de genes organizados en cromosomas, hebras de ADN muy enrolladas que contienen la información genética vital para la célula y el organismo. Dado que cada célula debe contener completa la información genética propia de su especie, la célula madre debe hacer una copia de cada cromosoma antes de la mitosis, de forma que las dos células hijas reciban completa la información. Esto ocurre durante la fase S de la interfase, el período que alterna con la mitosis en el ciclo celular y en el que la célula entre otras cosas se prepara para dividirse
Tras la duplicación del ADN, cada cromosoma consistirá en dos copias idénticas de la misma hebra de ADN, llamadas cromátidas hermanas, unidas entre sí por una región del cromosoma llamada centrómero. Cada cromátida hermana no se considera en esa situación un cromosoma en sí mismo, sino parte de un cromosoma que provisionalmente consta de dos cromátidas.
En animales y plantas, pero no siempre en hongos o protistas, la envoltura nuclear que separa el ADN del citoplasma se desintegra, desapareciendo la frontera que separaba el contenido nuclear del citoplasma. Los cromosomas se ordenan en el plano ecuatorial de la célula, perpendicular a un eje definido por un huso acromático. Éste es una estructura citoesquelética compleja, de forma ahusada, constituido por fibras que son filamentos de microtúbulos. Las fibras del huso dirigen el reparto de las cromátidas hermanas, una vez producida su separación, hacia los extremos del huso. Por convenio científico, a partir de este momento cada cromátida hermana sí se considera un cromosoma completo, y empezamos a hablar de cromosomas hermanos para referirnos a las estructuras idénticas que hasta ese momento llamábamos cromátidas. Como la célula se alarga, las fibras del huso “tiran” por el centrómero a los cromosomas hermanos dirigiéndolos cada uno a uno de los polos de la célula. En las mitosis más comunes, llamadas abiertas, la envoltura nuclear se deshace al principio de la mitosis y se forman dos envolturas nuevas sobre los dos grupos cromosómicos al acabar. En las mitosis cerradas, que ocurren por ejemplo en levaduras, todo el reparto ocurre dentro del núcleo, que finalmente se estrangula para formar dos núcleos separados.
Se llama cariocinesis a la formación de los dos núcleos con que concluye habitualmente la mitosis. Es posible, y ocurre en ciertos casos, que el reparto mitótico se produzca sin cariocinesis (endomitosis) dando lugar a un núcleo con el material hereditario duplicado (doble número de cromosomas).
La mitosis se completa casi siempre con la llamada citocinesis o división del citoplasma.
yulimar benavente
ing: agronoma
Mora Martha, ci: 18.974.094
ResponderEliminarIng. Agrónoma sección “G”
Buenas tardes, en esta oportunidad se estará hablando de otra parte fundamental de la célula, como lo es la osmosis, mitosis, el metabolismo y la respiración.
Se conoce como ósmosis a un fenómeno se puede definir como el paso de partículas de solvente a través de una membrana semipermeable, desde una solución de menor concentración hacia otra de mayor concentración de soluto.
Las soluciones de menor concentración de soluto también se suelen llamar “soluciones hipotónicas”, y las de mayor concentración de soluto “soluciones hipertónicas”. El proceso de osmosis puede observarse tanto en células animales como en células vegetales.
Por otra parte, en este proceso se pueden apreciar una serie de movimientos, como lo es el transporte activo, el cual es el movimiento de sustancias a través de una membrana celular, desde una región de baja concentración a otra de mayor concentración, es decir, en contra de un gradiente de concentración, utilizando energía proporcionada por reacciones químicas como lo es el ATP, esto se denomina transporte activo. Y el transporte pasivo, el cual consiste en el intercambio de sustancias que se realiza a través de la membrana, sin gasto energético por parte de la célula. Este puede efectuarse en dos maneras como lo son por difusión, que es el proceso de movimiento de moléculas o partículas desde una región de mayor concentración hacia otra de menor concentración del mismo soluto, y por osmosis el cual ya lo explique con anterioridad.
No obstante se puede decir que la mitosis, es un proceso de reparto equitativo del material hereditario (ADN) característico de las células eucarióticas.[1] Normalmente concluye con la formación de dos núcleos separados (cariocinesis), seguido de la partición del citoplasma (citocinesis), para formar dos células hijas. La mitosis completa, que produce células genéticamente idénticas, es el fundamento del crecimiento, de la reparación tisular y de la reproducción asexual. La meiosis, un proceso que comparte mecanismos con la mitosis pero que no debe confundirse con ella (es otro tipo de división celular, propio de los gametos), produce células genéticamente distintas y, combinada con la fecundación, es el fundamento de la reproducción sexual. Sin embargo esta contiene una serie de fases que la constituyen como lo son las siguientes.
Interfase la cual se divide en tres fases que son.
G1: esta fase se extiende desde que la célula nace hasta que inicia la etapa S. Es la etapa en la que tiene lugar la síntesis de ARNm con la consiguiente producción de proteinas
S: en esta fase se produce la replicación del ADN nuclear y síntesis de ARNm e histonas
G2: durante la cual también se observa síntesis de proteínas (las que constituirán los microtúbulos del haz mitótico).
Durante toda la interfase la célula crece, al producir proteínas y orgánulos citoplásmicos, preparándose así para entrar en mitosis
Profase la cual es la fase más larga de la mitosis. Se produce en ella la condensación del material genético (ADN, que en interfase existe en forma de cromatina), para formar unas estructuras altamente organizadas, los cromosomas. Como el material genético se ha duplicado previamente durante la fase S, los cromosomas replicados están formados por dos cromátidas, unidas a través del centrómero por moléculas de cohesinas.
Prometafase la cual es donde la membrana nuclear se desensambla y los microtúbulos invaden el espacio nuclear. Esto se denomina mitosis abierta, y ocurre en la mayor parte de los organismos multicelulares. Los hongos y algunos protistas, como las algas o las tricomonas, realizan una variación denominada mitosis cerrada, en la que el huso se forma dentro del núcleo o sus microtúbulos pueden penetrar a través de la membrana nuclear intacta.
Metafase. que es el que a medida que los microtúbulos encuentran y se anclan a los cinetocoros durante la prometafase, los centrómeros de los cromosomas se congregan en la "placa metafásica" o "plano ecuatorial", una línea imaginaria que es equidistante de los dos centrosomas que se encuentran en los dos polos del huso.
Anafase, que es cuando todos los cromosomas están correctamente anclados a los microtúbulos del huso y alineados en la placa metafásica, la célula procede a entrar en anafase (del griego ανα que significa "arriba", "contra", "atrás" o "re-").
Telofase, la cual es la reversión de los procesos que tuvieron lugar durante profase y prometafase. Durante la telofase, los microtúbulos no unidos a cinetocoros continúan alargándose, estirando aún más la célula. Los cromosomas hermanos se encuentran cada uno asociado a uno de los polos.
Por otra parte tenemos el metabolismo, el cual es de fundamental importancia ya que es el conjunto de reacciones y procesos físico-químicos que ocurren en una célula y en el organismo. Estos complejos procesos interrelacionados son la base de la vida a nivel molecular, y permiten las diversas actividades de las células: crecer, reproducirse, mantener sus estructuras, responder a estímulos, etc.El metabolismo se divide en dos procesos conjugados: catabolismo y anabolismo. Las reacciones catabólicas liberan energía; un ejemplo es la glucólisis, un proceso de degradación de compuestos como la glucosa, cuya reacción resulta en la liberación de la energía retenida en sus enlaces químicos. Las reacciones anabólicas, en cambio, utilizan esta energía liberada para recomponer enlaces químicos y construir componentes de las células como lo son las proteínas y los ácidos nucleicos. El catabolismo y el anabolismo son procesos acoplados que hacen al metabolismo en conjunto, puesto que cada uno depende del otro.
Sin embargo tenemos la respiracion que es el conjunto de reacciones bioquímicas que ocurre en la mayoría de las células, en las que el ácido pirúvico producido por la glucólisis se desdobla a dióxido de carbono (CO2) y agua (H2O) y se producen 38 moléculas de ATP.
En la cual su fórmula general es la siguiente:
C6H12O6 + 6 O2 ----> 6 CO2 + 6H2O y se liberan 38 moléculas de ATP
De este modo La respiración celular podría dividirse en dos tipos, según el papel atribuido al oxígeno:
Respiración aeróbica: Hace uso del O2 como aceptor último de los electrones desprendidos de las sustancias orgánicas. Es la forma más extendida, propia de una parte de las bacterias y de los organismos eucariontes, cuyas mitocondrias derivan de aquéllas. Se llama aerobios a los organismos que, por este motivo, requieren O2.
Respiración anaeróbica: No interviene el oxígeno, sino que se emplean otros aceptores finales de electrones, muy variados, generalmente minerales y, a menudo, subproductos del metabolismo de otros organismos. Un ejemplo de aceptor es el SO42- (anión sulfato), que en el proceso queda reducido a H2S.
yelitza pacheco
ResponderEliminarING. AGRONOMA
Núcleo celular
El núcleo celular es una estructura característica de las células eucariotas. Contiene la mayor parte del material genético celular, organizado en cromosomas, basados cada uno en una hebra de ADN con acompañamiento de una gran variedad de proteínas, como las histonas. Los genes que se localizan en estos cromosomas constituyen el genoma nuclear de la célula eucariótica, donde se encuentran otros genomas, propio de algunos orgánulos de origen endosimbiótico. La función del núcleo es mantener la integridad de
Una o más estructuras esferoidales, relacionadas con la síntesis de las principales piezas de los ribosomas y con su ensamblaje parcial. Esas piezas están formadas por ARN y proteínas básicas. Se distinguen dos porciones del nucléolo, la región granular, formada por gránulos de ARN, y la región fibrilar formada por filamentos de ARN. Una tercera región, muy difícil de observar es la denominada porción -cromosómica del nucléolo, en MitosiS
En biología, la mitosis (del griego mitos, hebra) es un proceso de reparto equitativo del material hereditario (ADN) característico de las células eucarióticas
-La meiosis, un proceso que comparte mecanismos con la mitosis pero que no debe confundirse con ella (es otro tipo de división celular, propio de los gametos), produce células genéticamente distintas y, combinada con la fecundación, es el fundamento de la reproducción sexual.
-metabolismo es el conjunto de reacciones y procesos físico-químicos que ocurren en una célula y en el organismo.[1] Estos complejos procesos interrelacionados son la base de la vida a nivel molecular, y permiten las diversas actividades de las células: crecer, reproducirse, mantener sus estructuras, responder a estímulos, etc.
-La respiracion
Consiste en un intercambio gaseoso osmótico (o por difusión) con su medio ambiente en el que se capta oxígeno, necesario para la respiración celular, ...
La mitosis es el tipo de división celular por el cual se conservan los orgánulos y la información genética contenida en sus cromosomas, que pasa de esta manera a las células hijas resultantes de la mitosis. La mitosis es igualmente un verdadero proceso de multiplicación celular que participa en el desarrollo, el crecimiento y la regeneración del organismo
ResponderEliminarLa meiosis, un proceso que comparte mecanismos con la mitosis pero que no debe confundirse con ella (es otro tipo de división celular, propio de los gametos), produce células genéticamente distintas y, combinada con la fecundación, es el fundamento de la reproducción sexual.
El catabolismo es la parte del metabolismo que consiste en la transformación de moléculas orgánicas o biomoléculas complejas en moléculas sencillas y en el almacenamiento de la energía química desprendida en forma de enlaces de fosfato y de moléculas de ATP, mediante la destrucción de las moléculas que contienen gran cantidad de energía en los enlaces covalentes que la forman, en reacciones químicas exotérmicas.
El anabolismo o biosíntesis es una de las dos partes del metabolismo, encargada de la síntesis o bioformación de moléculas orgánicas (biomoléculas) más complejas a partir de otras más sencillas o de los nutrientes, con requerimiento de energía (reacciones endergónicas), al contrario que el catabolismo.
En biología, la simbiosis es un tipo de interacción biológica entre dos o más organismos de distintas especies, en la que todos salen beneficiados. A los organismos involucrados se les denomina simbiontes.
respiración' generalmente se entiende al proceso fisiológico indispensable para la vida de organismos aeróbicos.
argenis rodriguez 18644679